

Seed yield and quality of coriander (*Coriandrum sativum* L.) as influenced by seed priming

A. SARKAR, A. B. SHARANGI, ¹S. SOUJANNYA AND ¹A. DATTA

Department of Plantation, Spices, Medicinal and Aromatic Crops, ¹Department of Seed Science and Technology, Bidhan Chandra KrishiViswavidyalaya, Mohanpur - 741 252, Nadia, West Bengal

Received : 10.01.2019 ; Revised : 13.04.2020 ; Accepted : 20.04.2020

DOI: 10.22271/09746315.2020.v16.i1.1271

ABSTRACT

Seed priming, a controlled hydration process, is a simple and cheap technology to the farmers for better germination of seed ensuring a good yield and quality. An experiment was conducted to evaluate the effects of different priming media, and duration on seed germination, growth, yield and essential oil content of coriander at the Horticultural Research Station, Mondouri, West Bengal. There were three different concentrations of chemical (KH_2PO_4) viz., 3-, 2-,1% and control (distilled water) with three different duration of soaking viz., 12-, - 16- and 20 hrs. Seed priming with KH_2PO_4 has significant influence on plant height of coriander. Maximum number of primary branches per plant (7.0), number of secondary branches per plant (12.3), maximum germination (91%), were recorded with 1% KH_2PO_4 for 20 hrs. 3% KH_2PO_4 for 12 hrs was found to produce maximum test weight (13.0 g), whereas, seed priming with 1% KH_2PO_4 for 20 hrs out-yielded all other treatments resulting in the highest number of umbels per plant (23.3), umbellets per umbel (5.7), seed per umbel (38.4), seed yield per plant (3.5 g), seed yield per meter square (15.0 g), projected seed yield (13.5 q ha⁻¹), respectively. It may be concluded from the results that to obtain higher germination, seed yield and essential oil of coriander, seeds should be treated with 2% KH_2PO_4 as seed priming chemical for 20 hrs under this Gangetic alluvial region as revealed from the result.

Keywords: Coriander, essential oil seed, germination, priming, yield

Coriander (Coriandrumsativum L.), is an important winter season seed spice of the family Apiaceae. Its leaves are extensively used for flavouring dishes and seeds as spices and condiments throughout the world including India. Coriander is native to South Europe and the Mediterranean region, and is extensively grown in Russia, Bulgaria, Mexico, USA, Argentina, China, Romania, Italy, Japan, Hungary, Poland, Czech, Morocco and India since human antiquity. The seeds and different parts of the plant have been reported for multiple health functions and biological activities (Nadkarni, 1976, Saeed and Tariq, 2007; Matasyoh et al., 2009; Begnami et al., 2010). It is used in the preparation of many household medicines to cure cold, seasonal fever, nausea, vomiting and stomach disorder. Pharmaceutical use of coriander is essentially to mask the taste of other medicinal compounds or to calm the irritating effects on the stomach that some medicines cause.Coriander leaves and seeds are valued as food mainly for its high Vitamin A and Vitamin C. Coriander oil is a clear, colourless to light yellow liquid. Indian coriander seeds are poor in oil content (0.1-0.4%). The content of essential oil in ripe fruit is comparatively low (typically, less than 1%) (Kumar et al., 1977).

Seed priming is a controlled hydration process followed by re-drying that allows seed to imbibe water and begin internal biological processes necessary for germination, but which does not allow the seed to actually germinate. Priming allows some of the metabolic

Email: absharangi@gmail.com

processes necessary for germination to occur. In priming, seeds are soaked in different solutions with high osmotic potential. This prevents the seeds from absorbing enough water for radical protrusion, thus suspending the seeds in the lag phase (Taylor et al., 1998). Seed priming has been commonly used to reduce the time between seed sowing and seedling emergence and to synchronize emergence (Parera and Cantliffe, 1994).Several investigations (Taylor and Harman 1990, Van Hulten et al., 2006) confirmed that seed priming has many benefits including early and rapid emergence, stand establishment, crop establishment, higher water use efficiency, deeper roots, increasein root growth, uniformity in emergence, synchronize the germination of individual seeds break of seed dormancy, initiation of reproductive organs, better competition with weed, early flowering and maturity, resistance to environmental stresses (such as drought and salinity) and diseases (Sclerotium rolfsii L.)as well as increment in yield thereby providing a simple and cheap technology to the farmers for better crop production. Seed priming can be accomplished through different methods such as hydropriming (soaking in distilled water), osmo-priming (soaking in osmotic solutions such as poly ethylene glycol, potassium salts, e.g., KCl, K₂SO₄) and plant growth inducers (CCC, Ethephon, IAA) (Capron et al., 2000).Osmopriming and hydropriming of seeds may improve germination and emergence (Ashraf and Abu-Shakra, 1978) and may promote vigorous root growth (Carceller and Soriano, 1972).

Seed yield and quality of coriander

The information regarding safe limits of priming duration and concentration in coriander and the associated effects on growth, yield and quality is very much scanty especially under Gangetic alluvial region. There are also no comprehensive understanding on germination behavior of the crop leading to field establishment and its subsequent translation towards yield and quality. Keeping in view the above, the present experiment was undertaken to evaluate the effects of different priming media and duration on seed germination on growth, yield and essential oil content of coriander.

MATERIALS AND METHODS

An investigation on the effect of seed priming in coriander (Coriandrum sativum L.)was carried out at the Horticultural Research Station, Mondouri, Faculty of Horticulture, Bidhan Chandra KrishiViswavidyalaya, Nadia, West Bengal during the year 2018-19 in the month of November to March for identifying the best seed priming concentration and duration to get the improvedgermination of coriander and its growth yield and quality under Gangetic alluvial plains of West Bengal. The Research Station was located at 23.5°North Latitude, 89⁰ East Longitude having an average altitude of 9.75 m above mean sea level. The experimental site was located in subtropical humid climate with Gangetic alluvial soil having sandy clay loam texture, with good water holding capacity, well drained, and with acidic to neutral reaction (pH 6.7) and moderate fertility status (organic carbon: 0.74%, available N: 140.5 kg ha-1, available P₂O₅: 28.5 kg ha⁻¹, available K₂O : 87.0 kg ha⁻¹).

The present investigation was laid out in Randomized Block Design replicatedthrice with threedifferent concentrations of potassium dihydrogen phosphate (KH_2PO_4) viz., C_1 (Seed priming with 3% KH_2PO_4), C_2 (2% KH_2PO_4), C_3 (1% KH_2PO_4) and one control (C_0 , without KH_2PO_4 , with water). The coriander seeds weresoaked for three different durations namely D_1 (12 hrs), D_2 (16 hrs), D_3 (20 hrs). Therewere twelve number of treatment combination randomized in the plots of 2 x 1.5 m² size with spacing of 25 cm X 10 cm and 120 plants per plot. The statistical analysis was done by using OP-STAT, SPSS (IBM v. 20.0) and MS Excel software.

RESULTS AND DISCUSSION

Seed germination, root and shoot length

A remarkable positive effect on germination of coriander seed was found on seed priming with KH_2PO_4 asobserved in fig.1. The highest germination per plant (91%) was recorded with C₂D₃treatment combination

J. Crop and Weed, 16(1)

(seed priming with 2% KH₂PO₄ for 20 hrs) followed by $C_2D_2(89.7\%)$, $C_2D_1(87\%)$ and the lowest germination per plant was observed in $C_0D_3(73.3\%)$. The highest root and shoot length per plant (21.4 and 12.3 cm, respectively) was found with C_2D_3 (seed priming with 2% KH₂PO₄ for 20 hrs) treatment combination which was statistically at par with the other treatments (Table 1). The highest seedling vigour index (3000) was obtained from the treatment (C_2D_3) where seed priming was done with 2% KH₂PO₄ for 20 hrs closely followed by C_2D_2 and C_3D_1 which were statistically at par (Fig.2). There are several other reports that seed priming can homogenize seed germination in a short period of time (Zhu, 2002; Khajeh-Hosseini, 2003)

Morphological characters

Seed priming with KH₂PO₄ has significant influence on plant height of coriander (Fig. 3). The observations recorded on 30, 60 and 120 days after sowing (DAS) showed that among the treatment C_2D_3 (seed priming with 2% KH₂PO₄ for 20 hrs) recorded the highest plant height (64.3 cm) on 30 DAS and at harvest. However, for 60 DAS C2D2 treatment combination recorded the highest plant height (60.3cm). Plants from primed seeds might enhance water and nutrients intake resulting in increased plant height as was observed by Farooq et al. (2006) in rice seed. The number of branches per plant has significant effect on the seed priming with KH₂PO₄ in coriander (Fig. 4). The highest number of primary and secondary branches per plant (7 and 12.3, respectively) was recorded with C₂D₃ (seed priming with 2% KH₂PO₄ for 20 hrs) treatment combination. The similar result was also observed by Ranjita Devi and Sharangi (2019) in case of a few germplasms on plant height (64.8 cm)and number of primary branches (3.8 to 10.5) in coriander.

Yield and yield attributes

The maximum number of umbels per plant⁻¹ (23.3), number of umbellets umbel-1 (5.7), and seed umbel-1 (38.4) (Fig 5) were recorded with C_2D_3 (seed priming with 2% KH₂PO₄ for 20 hrs) treatment combination. The maximumtest weight (1000 seed, 13 g) was obtained from C₁D₁ (seed priming with 3% KH₂PO₄ for 12 hrs) followed by C_3D_2 (12.5 g) and C_2D_1 (12.1g). The maximum seed yield (15.0 g m²) was obtained with $C_{2}D_{2}$ (seed priming with 2% KH₂PO₄ for 20 hrs) followed by C_2D_1 and C_2D_2 (14.7 g/m²) which were statistically at par and the lowest seed yield was observed in $C_0 D_2$ (12.4g/ m²). The seed yield (g plant⁻¹)has also a similar trend with significant effects on the seed priming with KH₂PO₄ in coriander. The seed priming with KH_2PO_4 has a significant effect on projected seed yield. The highest projected seed yield (13.5 q/ha) was recorded with C_2D_3

Sarkar et al.

Treatments	Root length (cm)*	Shoot length (cm)*
$\overline{C_1D_1}$ (Seed priming with 3% KH ₂ PO ₄ for 12 hrs)	18.5±0.38	9.8±0.43
C_1D_2 (Seed priming with 3% KH ₂ PO ₄ for 16 hrs)	19.5±0.35	9.9±0.18
$C_1 D_3$ (Seed priming with 3% KH ₂ PO ₄ for 20 hrs)	20.4±0.61	10.2±0.31
$C_{2}D_{1}$ (Seed priming with 2% KH ₂ PO ₄ for 12 hrs)	20.1±0.17	11.1±0.35
$\tilde{C_{2}D_{2}}$ (Seed priming with 2% KH ₂ PO ₄ for 16 hrs)	19.9±0.22	10.9±0.32
$C_{2}D_{3}$ (Seed priming with 2% KH ₂ PO ₄ for 20 hrs)	21.4±0.38	12.3±0.21
C_3D_1 (Seed priming with 1% KH ₂ PO ₄ for 12 hrs)	20.7±0.78	11.2±0.49
$C_{3}D_{2}$ (Seed priming with 1% KH ₂ PO ₄ for 16 hrs)	19.1±0.49	10.8±0.23
$C_{3}D_{3}$ (Seed priming with 1% KH ₂ PO ₄ for 20 hrs)	19.4±0.38	10.7±0.58
$C_0 D_1$ (Distilled water for 12 hrs)	18.2±0.58	11.2±0.23
$C_0 D_2$ (Distilled water for 16 hrs)	17.7±0.35	10.5±0.93
$C_0^{0}D_3^{2}$ (Distilled water for 20 hrs)	17.6±0.33	10.2±0.20
SEm(±)	0.46	0.42
LSD(0.05)	1.36	1.24

Table1: Effect of seed priming with KH_2PO_4 on root and shoot length of coriander

*Values represent Mean±SE

Table 2 : Effect of seed priming with KH_2PO_4 on seed yield of coriander

Treatments	Seed Yield (g plant ⁻¹)	Seed Yield (g m ²)	Projected Seed Yield(q ha-1)
$\overline{C_1D_1}$	3.1	13.5	12.2
$C_1 D_2$	3.2	13.9	12.5
C_1D_2	3.2	14.1	12.7
$C_2 D_1$	3.3	14.4	12.9
$\tilde{C_2D_2}$	3.4	14.7	13.2
$ \begin{array}{c} C_2D_1\\ C_2D_2\\ C_2D_3\\ C_2D_3 \end{array} $	3.5	15.0	13.5
$\tilde{C_2D_1}$	3.4	14.7	13.2
$ \begin{array}{c} C_{3}D_{1}\\ C_{3}D_{2}\\ C_{3}D_{3}\\ C_{3}D_{3} \end{array} $	3.1	13.5	12.2
$\tilde{C_2D_2}$	3.3	14.1	12.7
$\tilde{C_0 D_1}$	3.0	13.1	11.8
	2.9	12.7	11.5
$C_0^0 D_3^2$	2.9	12.4	11.2
SEm(±)	0.16	0.51	0.12
LSD(0.05)	0.47	1.52	0.36

Table 3 : Effect of seed priming with KH ₂ PO	P_4 on essential oil (%) of coriander
--	---

Treatments	Essential oil content (%) of seed*	
$\overline{C_1D_1}$ (Seed priming with 3% KH ₂ PO ₄ for 12 hrs)	0.26±0.003	
C_1D_2 (Seed priming with 3% KH ₂ PO ₄ for 16 hrs)	0.25 ± 0.003	
$C_1 D_3$ (Seed priming with 3% KH ₂ PO ₄ for 20 hrs)	0.26 ± 0.003	
C_2D_1 (Seed priming with 2% KH ₂ PO ₄ for 12 hrs)	0.27 ± 0.003	
$C_{2}D_{2}$ (Seed priming with 2% KH ₂ PO ₄ for 16 hrs)	0.27 ± 0.007	
$C_{2}D_{3}$ (Seed priming with 2% KH ₂ PO ₄ for 20 hrs)	0.28 ± 0.006	
$C_{3}D_{1}$ (Seed priming with 1% KH ₂ PO ₄ for 12 hrs)	0.26 ± 0.003	
$C_{3}D_{2}$ (Seed priming with 1% KH ₂ PO ₄ for 16 hrs)	0.26 ± 0.003	
$C_{3}D_{3}$ (Seed priming with 1% KH ₂ PO ₄ for 20 hrs)	0.25 ± 0.003	
$C_0 D_1$ (Distilled water for 12 hrs)	0.23 ± 0.003	
$C_0 D_2$ (Distilled water for 16 hrs)	0.24 ± 0.003	
$C_0^0 D_3^2$ (Distilled water for 20 hrs)	0.23±0.003	
SEm(±)	0.004	
LSD(0.05)	0.011	

 $*Values\ represent\ Mean \pm SE$

J. Crop and Weed, *16*(*1*)

Seed yield and quality of coriander

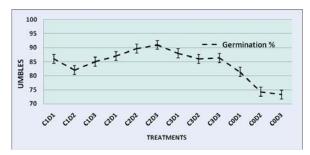


Fig. 1: Effect of seed priming with KH₂PO₄ on germination of coriander

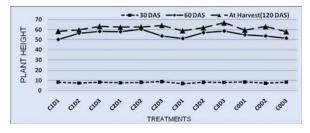


Fig. 3: Effect of seed priming with KH₂PO₄ on plant hight of coriander

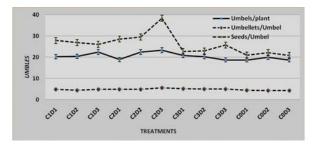


Fig. 5 :Effect of seed priming with KH₂PO₄ on yield attributing parameters of coriander

(seed priming with 2% KH_2PO_4 for 20 hrs) treatment combination followed by C_3D_1 (13.2 q ha⁻¹), C_2D_2 (13.2 q ha⁻¹) and the lowest seed yield quintal per hector was observed in C_0D_3 (11.2 q ha⁻¹). Seed priming might have increased the performance by altering the mechanism of enzymes which are responsible for enhancing yield attributes and yield thereby (Jamshidian and Talat, 2017).

Essential oil content (%)

It is evident from table 3 and figure 6 that seed priming with KH_2PO_4 has significant effect on essential oil content in coriander seed. The essential oil content (0.28 %) was the highest as recorded with C_2D_3 (seed priming with 2% KH_2PO_4 for 20 hrs) followed by C_2D_2 (0.27 %) and C_2D_1 (0.27 %) whereas the lowest oil content was observed in C_0D_3 (0.23 %). The essential oil content and composition of *C. sativum* can be influenced by cultivation practices, ontogenetic and genetic factors (Msaada *et al.*, 2007; Telci *et al.*, 2006). The essential

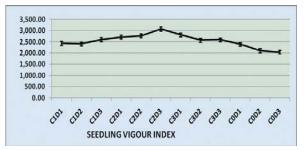


Fig. 2: Effect of seed priming with KH₂PO₄ onseedling vigour indexof coriander

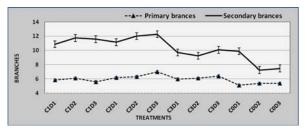


Fig. 4: Effect of seed priming with KH₂PO₄ on primary and secondary brances of coriander

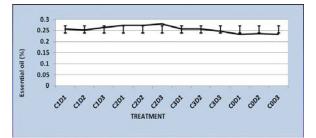


Fig. 6: Effect of seed priming with KH₂PO₄ on essential oil of coriander

oil content of coriander in the present study corresponded with the earlier reports obtained by Bandara *et al.* (2000).

The study showed a significant effect of both concentration of seed priming chemical and duration of soaking on germination, growth, yield and quality of coriander. So it may be concluded from the results that to obtain higher germination, seed yield and essential oil of coriander, seeds should be treated with 2% KH₂PO₄ as seed priming chemical for 20 hrs under this Gangetic alluvial region.

REFERENCES

- Ashraf, C. M. and Abu-Shakra, S. 1978. Wheat seed germination under low temperature and moisture stress. *Agronomy J.*, **70**: 135-39.
- Bandara, M., Wildschut, C., Russel, E., Ost, L., Simo,T., and Weber, J. 2000. Special crops program (Brooks). Alberta, Agriculture, Food, and Rural Development. Crop Diversification Centres

Annual Report. Alberta, Canada. Available at: http://www.agric.gov.ab.ca/ministry/pid/cdc/00/sc_brooks.html.

- Begnami AF, Duarte MCT, Furletti RV. 2010. Antimicrobial potential of Coriandrumsativum L. against different candida species in vitro. *Food Chem.*,**118**: 74-77.
- Carceller, M. S. and Soriano, A. 1972.Effect of treatments given to grain, on the growth of wheat roots under drought conditions.*Can. J. Bot.*, **50**: 105-08.
- Capron, I., Corbineau, F., Dacher, F., Job, C., Côme, D. and Job, D. 2000. Sugarbeet seed priming: effects of priming conditions on germination, solubilization of 11-S globulin and accumulation of LEA proteins. *Seed Sci. Res.*, **10**(3): 243-54.
- Farooq, M., Basra, S.M.A., Warraich, E.A.2006. Optimization of hydro-priming techniques for rice seed invigoration. *Seed Sci. Technol.*, 34 (2): 507-12.
- Jamshidian, Z. and Talat, F. 2017. Effects of seed priming on morphological and phonological characteristics of the coriander (*Coriandrumsativum* L.). *Adv. Pl. Agric. Res.*, **7**(6): 411-15.
- Khajeh-Hosseini, M., Powell, A.A., Bringham, I.J. 2003. The interaction between salinity stress and seed vigour during germionation of soybean seeds. *Seed Sci. Technol.*, **31**: 715-25.
- Kumar, C. R., Sarwar, M. and Dimri, B. P. 1977. Bulgarian coriander in India and its future prospects in export trade. *Indian perfumer*, 21: 146-50.
- Matasyoh, JC, Maiyo, ZC, Ngure, R. and Chepkorir, R. 2009. Chemical composition and antimicrobial activity of essential oil of Coriandrumsativum. *Food Chem.*,**113**: 526-29.
- Msaada, K.H.K., Ben Taarit, M., Chahed, T., Kchouk, M.E. and Marzouk, B. 2007.Changes on essential oil composition of coriander (*Coriandrumsativum*

L.) fruits during three stages of maturity. *Food Chemistry*, **102** : 1131- 34.

- Nadkarni, A.K., 1976. Indian MateriaMedica Popular.Prakshan, Bombay, p. 381.
- Parera, C. A. and Cantliffe, D. J. 1994. Pre-sowing seed priming. *Hortic. Rev.*, **16**: 109-41.
- Ranjita Devi, A. and Sharangi, A.B. 2019. Morphological character and seed yield potential of coriander genotypes under Gangetic Alluvial region of West Bengal. *Int.J. Curr. Microbiol. App. Sci.*, 8(4): 775-82.
- Saeed S, Tariq P. 2007. Antimicrobial activities of Emblicaofficinalis and Coriandrumsativum against Gram-positive bacteria and Candida albicans. *Pak. J. Bot.*, **39**: 913-17.
- Said-Al Ahl, H.A.H., El Gendy, A.G. and Omer, E.A. 2014.Effect of Ascorbic Acid, Salicylic Acid on Coriander Productivity and Essential Oil Cultivated in two Different Locations. *Advances in Env. Biol.*, 8(7): 2236-50.
- Taylor, A.G., Harman, G.E. (1990) Concepts and technologies of selected seed treatments.*Ann. Rev. Phytopathol.*,**28**:321-29.
- Taylor, A. G., Allen, P. S., Bennett, M. A., Bradford, K. J., Burris, J. S. and Misra, M. K. 1998. Seed enhancements.*Seed Sci. Res.*, 8(2): 245-5.
- Telci, I., Toncer, O.G., and Sahbaz, N. 2006. Yield, essential oil content and composition of Coriandrumsativum varieties (var. vulgareAlef and var. microcarpum DC.) grown in two different locations. J. Essential Oil Res., **18**:189-93.
- Van Hulten, M., Pelser, M., Van Loon, L.C., Pieterse, C.M.J. and Ton, J. 2006.Costs and benefits of priming for defense in Arabidopsis.*Proc. Natl. Acad.Sci.*USA,**103**:5602-07.
- Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. *Annu. Rev. Plant Biol.*, **53**: 247-73.