

Breeding for improved leaf yield and studies on combining ability in mulberry

K. SURESH, ¹JALAJA. S. KUMAR, D. CHAKRAVARTY AND V. SIVAPRASAD

Central Sericulture Research and Training Institute, Berhampore, West Bengal – 742101, ¹Regional Sericulture Research Station, Kodathi, Karnataka – 560084, India

Received : 11.11.2019 ; Revised : 10.12.2019 ; Accepted : 05.01.2020

DOI: 10.22271/09746315.2019.v15.i3.1239

ABSTRACT

Mulberry is cultivated for its leaves to rear mulberry silkworms and silk productivity determines the profitability in sericulture. In the present study, forty two crosses were generated by crossing six females with seven male parents in Line × test mating design. Segregating hybrid progenies of ten crosses were evaluated for leaf yield and its components for understanding combining ability and gene action in mulberry. The gca and sca effects were highly significant for all the traits studied indicating the importance of additive and non-additive genetic components. The ratio of gca and sca variance was less than unity indicating preponderance of non-additive genetic variance and suggests the good prospects of exploiting variation through heterosis breeding. Bishnupur-10, Kajli OPH, C-776 and CF_1 -10 were identified as good general combiners and can be utilized for generating desirable recombinants for further selection. Out of 42 crosses, nineteen exhibited significantly higher leaf yield (482-501 g/plant/crop) along with better quality over the check variety S1635 (324 g/plant). These progenies need to be evaluated further following systematic procedures laid down for mulberry for identify promising high yielding varieties.

Keywords: Combining ability, gene action, leaf yield, recombinants, and selection

Sericulture is the important agro-based industry and success of this enterprise depends on successful rearing of silkworms along with mulberry cultivation. Among the four kinds of silks produced in India, mulberry silk occupied a giant's share with a production of 25,344 MT from an area of 2.35 lakh hectares (2018-19). Traditional breeding approaches of hybridization and selection coupled with mutation breeding resulted in development a few high yielding varieties having a leaf yield potential of 55- 60 t ha⁻¹ yr⁻¹. Further to enhance the silk production, mulberry leaf productivity has to be improved by developing varieties with higher yield and quality along with wider adaptability. Improvement of mulberry foliage both in quantitative and qualitative aspect is the long term goal of mulberry breeders. The conventional heterosis breeding method follows a very specific procedure from selection of parents to evaluation over space and time (Vijayan 2010). The genetic improvement of mulberry depends on the availability of genetic variability and selection of suitable genotypes from breeding population which requires a thorough knowledge on leaf yield. Mulberry leaf yield is a complex trait contributed by a number of component traits and is highly influenced by environment and management practices. The per se leaf yield alone may not be the best criterion for selection and it is therefore, important to understand the genetics and heritability of yield components. Combining ability refers to the ability of a parent to transmit its desirable characters to its progeny in crosses (Sprague, and Tatum, 1942) and a good combining parents are known to produce superior progenies when combined with other parents. Line \times Tester analysis is the simplest and efficient method of assessing combining ability in large number of parents. Estimation of GCA helps to select parents with superior combining ability for exploitation of hybrid vigour by development of segregating populations (Vijayan *et al.*, 1997). The purpose of this investigation was to understand the gene action for leaf yield and its component traits and to develop improved mulberry genotypes.

MATERIALS AND METHODS

Study location

An experiment was undertaken at research field of Central Sericultural Research and Training Institute, Berhampore during 2013 to 2016. It is situated at 34° 0' 28" North, 71° 34' 24" East, at an altitude of 19 m above mean sea level having humid sub-tropical climate.

Mulberry germplasm used in the study

The species and origin of the germplasm used in this study are given in table 1. The male parents used were of species *M. indica*, while the female parents belong to *M. alba, M. multicaulis, M. latifolia* of indigenous and exotic origin.

Development of F, hybrids

Six female and seven male parents maintained as high trunk plantation in Germplasm bank of this institute were

Email : suresh4211@gmail.com

utilized for hybridization during the flowering season between February and April 2013. The plants were pruned at different times for synchronizing flowering and to facilitate generation of enough F, hybrid seeds. The butter paper bags covered on the female plant shoots was opened from top and the male catkins were gently tapped over the female catkin. The butter paper cover was again sealed and the details of the male, female parents and date of pollination was noted on the tag attached to the female plant. The seeds from 42 crosses were extracted from harvested hybrid fruits by water soaking method (Table 2). The dried seeds were sown in nursery with a spacing of 10 cm between rows. When seedlings attained sufficient growth of 2-3 weeks, thinning and gap filling was carried out wherever necessary to ensure uniform plant density.

Description of experimental design and evaluation of F_1 Hybrids or segregating families

One year old seedlings of forty two crosses along with parents and check variety S-1635 was transplanted in a row spacing of 60×60 cm with a common border under Progeny row trial (PRT). After a period establishment for one year, plants were pruned as per commercial crop schedules of the West Bengal. All the recommended general package practices of cultivation for irrigated condition of this region were followed to raise healthy crop (Roy et al., 1978). Observations were recorded on all the segregating progenies of each cross during July and September 2016 crops for twelve quantitative characters viz., fresh leaf weight (g), leaf area (cm²), Chlorophyll index by Chlorophyll meter (CCM 200), leaf moisture content (%), specific leaf area (cm²g dw⁻¹), inter-nodal distance (cm), length of longest shoot (cm), primary shoots per plant, total shoots length (cm), harvest index (%), shoot yield (g plant) and leaf yield plant⁻¹ (g). The mean data of each cross was analysed for combining ability following the standard method of Kempthorne (1957). Total variance among segregating hybrid families was partitioned into variance due to lines, testers and their interactions. The contribution of lines, testers and interaction of both towards total variability for each of the traits was computed. The genotypes selected from each crosses were further evaluated over five commercial crop seasons under irrigated condition for identifying superior genotypes suitable for of West Bengal. The mean values were subjected to statistical analysis.

RESULTS AND DISCUSSION

Analysis of variance (ANOVA) of the line × tester set revealed highly significant differences in mean sum of squares due to lines, testers and their interaction for all the traits studied indicating both additive and non - additive effects of gene were important in the genetic expression of the character (Table 3). These results are in accordance with those of Vijayan et al., 1997, Banerjee et al., 2004 and Pooja, 2016. Highly significant and positive mean sum of squares for hybrids indicating the diverse performance of different crosses for all the traits studied. The genotypic value of an individual is determined by different types of gene actions such as additive, dominance and interactions of both. The magnitudes of SCA variances were higher than GCA variance for all the traits studied revealed the predominance of non-additive gene action in the expression of these traits (Table 3). The predominance of non-additive genetic variance offers scope for exploitation of heterosis in Mulberry. This kind of results was also reported by Vijayan et al., 1997 and 2008 and Pooja, 2016. The proportional contribution of lines ranged from 7.41% (leaf area) to 54.12% (primary shoots per plant) whereas for testers it ranged from 6.58% (primary shoots plant⁻¹) to 30.15% (length of the longest shoot) (Table 3). However, contribution of their interaction ranged from 39.30% (primary shoots plant¹) to 75.31% (shoot yield plant⁻¹) indicating higher contribution of interaction and the importance of combination of specific parents. Similar results were also reported for most of the yield traits by Vijayan et al., 1997 and 2008, Banerjee et al., 2014 and Pooja, 2016.

The plant breeding programme is largely successful depending on the choice of parents for hybridization. Genotypes with high mean performance along with high positive gca effects will be useful in generating desirable recombinants in Mulberry. Wide range of gca effects of parents revealed considerable differences among the parents utilized (Table 4). Line Chinese F, (10) exhibited highest positive GCA effects for most of the traits studies and is the best combiner for growth and leaf yield. Other parents that are good general combiners for leaf weight, leaf area, leaf moisture and yield were Kajli OPH, M. multicaulis and China white for inter-nodal distance along with shoot length. Among the testers, Bishnupur-10 recorded highest gca effects in all the traits studied except harvest index and for harvest index, leaf weight and yield was Almora local. Different parents exhibited high magnitude of gca effects for growth and leaf yield traits has been reported in mulberry (Vijayan et al., 1997 and Pooja, 2016). Thus, the estimates of general combining ability (gca) effects of lines and testers showed that Chinese F1 (10) and Bishnupur-10 were more appropriate good general combiner in breeding for improve leaf yield in mulberry.

The specific combining ability effects determine the usefulness of a particular cross for exploitation of heterosis. Specific combining ability is the deviation from the mean value predicted on the basis of general combining ability and crosses with high *gca* effects gave raise to high *sca* effects (Allard, 1956). SCA effects of forty two crosses for twelve traits studied are presented in table 5. For fresh leaf weight and area, 16 crosses exhibited significant positive *sca* effects and for specific leaf area seven crosses showed significant negative *sca*, indicates higher leaf thickness in the hybrids. For the quality characters like leaf chlorophyll index and moisture content, significant positive *sca* effect was recorded in eleven and nine crosses, respectively. Fifteen crosses showed significant positive *sca* effect for total

shoots length indicating highest growth in these hybrids. The SCA estimates for leaf moisture, chlorophyll index, growth and yield showed no combination in desirable direction. For leaf yield, among 54 crosses, nineteen recorded significant positive *sca* effects for leaf yield along with higher mean performance. It is observed that among the different crosses, which exhibited high *sca* effects for leaf yield have possessed positive *sca* effects for one or more yield related traits also. Vijayan *et al.*, (1997) also mentioned to include one good general combiner during hybridization to obtain higher heterosis. Grafius (1959) also suggested that there will not be a

Name	CSGRC No.	NBPGR No.	Species	Origin
<i>M. indica</i> HP(MHP)	MI - 0099	IC313827	M. indica	India
Almora Local	MI - 0015	IC313680	M. indica	India
Berhampore-B	MI - 0627	IC405775	M. indica	India
Bishnupur-10	MI - 0092	IC313727	M. indica	India
China White	ME - 0042	EC493799	M. alba	China
Chinese $F_1 - 10(CF_1 10)$			M. alba	China
MS-30	MI - 0005	IC313966	M. alba	India
Kajli OPH (KOP)			M. alba	India
M. multicaulis	ME - 0006	EC493763	M.multicaulis	Russia
English Black	ME - 0004	EC493761	M. latifolia	France
Kosen	ME - 0066	EC493823	M.latifolia	Japan
V - 1	MI-0308	IC-313996	M. indica	India
C-776			M. indica	India

Table 1: Species ar	d origin of parents	used for hybridization

Table 2: List of mulberry hybrids or crosses generated in L×T mating design

Cross	Name	Cross	Name
1	$MHP \times V1$	22	$MS-30 \times V1$
2	MHP \times C-776	23	$MS-30 \times C-776$
3	MHP × Kosen	24	$MS-30 \times Kosen$
4	MHP × Almora Local	25	$MS-30 \times Almora Local$
5	$MHP \times English Black$	26	$MS-30 \times English Black$
6	$MHP \times Berhampore-B$	27	$MS-30 \times Berhampore-B$
7	MHP × Bishnupur-10	28	$MS-30 \times Bishnupur-10$
8	China White \times V1	29	M. multicaulis x V1
9	China White \times C-776	30	M. multicaulis \times C-776
10	China White \times Kosen	31	<i>M. multicaulis</i> \times Kosen
11	China White \times Almora local	32	<i>M. multicaulis</i> \times Almora local
12	China White \times English Black	33	M. multicaulis × English Black
13	China White \times Berhampore-B	34	<i>M. multicaulis</i> \times Berhampore-B
14	China White \times Bishnupur-10	35	<i>M. multicaulis</i> \times Bishnupur-10
15	$CF_1(10) \times V1$	36	$KOP \times V1$
16	$CF_{1}(10) \times C-776$	37	$KOP \times C-776$
17	$CF_{1}(10) \times Kosen$	38	KOP × Kosen
18	$CF_{1}(10) \times Almora Local$	39	$KOP \times Almora local$
19	$CF_{1}(10) \times English Black$	40	$KOP \times English Black$
20	$CF_{1}(10) \times Berhampore-B$	41	KOP × Berhampore B
21	$CF_1(10) \times Bishnupur-10$	42	KOP × Bishnupur-10

J. Crop and Weed, *15*(*3*)

Mean sum of squares New TAX DF FLW LA LA <th col<="" th=""><th>Table 3: Analysis of variance for combining ability</th><th>variance for</th><th>combining a</th><th></th><th>arents and</th><th>l their 42 F_1</th><th>hybrids for</th><th>· different</th><th>of 13 parents and their $42 \mathrm{F_1}$ hybrids for different leaf yield traits</th><th>its</th><th></th><th></th><th></th></th>	<th>Table 3: Analysis of variance for combining ability</th> <th>variance for</th> <th>combining a</th> <th></th> <th>arents and</th> <th>l their 42 F_1</th> <th>hybrids for</th> <th>· different</th> <th>of 13 parents and their $42 \mathrm{F_1}$ hybrids for different leaf yield traits</th> <th>its</th> <th></th> <th></th> <th></th>	Table 3: Analysis of variance for combining ability	variance for	combining a		arents and	l their 42 F_1	hybrids for	· different	of 13 parents and their $42 \mathrm{F_1}$ hybrids for different leaf yield traits	its			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						Mean sum	of squares							
end 1 0.30° 92.34° 23.45° 3.40° 3.24° 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11		FLW	LA	LMC	CCI	SLA	TLS	NPS	ISL	Ð	HI	SYP	LYP	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.30**	922.40** 1 303.40**	222.10** 0.70**	36.80** 0.30**	3076.80** 777 76**	2224.50**	3.40** 3.30**	54729.7** 34050 8**	0.60**	0.01**	11248.4** 15310.0**	11937.2^{**}	
\times T(c) 6 0.80° 31110° 11.56 712.70° 10.72317 </td <td>т ()</td> <td>0.30**</td> <td>846.30**</td> <td>24.40^{**}</td> <td>28.70^{**}</td> <td>1881.20^{**}</td> <td>181.30^{**}</td> <td>14.50^{**}</td> <td>25867.0**</td> <td>0.91**</td> <td>0.01^{**}</td> <td>10328.6^{**}</td> <td>7806.8**</td>	т ()	0.30**	846.30**	24.40^{**}	28.70^{**}	1881.20^{**}	181.30^{**}	14.50^{**}	25867.0**	0.91**	0.01^{**}	10328.6^{**}	7806.8**	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.80**	2111.10^{**}	11.50^{**}	10.30^{**}	602.60**	712.70**	1.50^{**}	39985.8**	0.20^{**}	0.01^{**}	17221.7^{**}	16756.9**	
Model Total State State <t< td=""><td></td><td>0.50</td><td>1341.00</td><td>206.30</td><td>176.80</td><td>18866.40</td><td>300.00</td><td>1.80</td><td>35470.0</td><td>0.25</td><td>0.00</td><td>15757.9</td><td>9240.8</td></t<>		0.50	1341.00	206.30	176.80	18866.40	300.00	1.80	35470.0	0.25	0.00	15757.9	9240.8	
Estimates of variance component EXA 1:33 1:33 0:07 0:09 3:91 1:21 0:001 0:015 0:013 0:001 0:015 0:011	()	3.96	3.31	1.17	2.80	3.28	00.40 6.10	3.26	2.57	1.39	1.82	2.76	6.72	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Estim	lates of vari	ance compo	nent						
Proportional contribution to total variance instance 9.02 7.41 30.7 37.6 53.36 53.12 50.2 53.43 53.33 53.33 53.33 53.33 53.33 53.33 53.56 53.16 73.33 55.33 55.33 55.33 55.53 55.33 55.55 55.55 <td>GCA SCA GCA/SCA</td> <td>-13.39 17573.6 -0.001</td> <td>1.38 663.98 0.002</td> <td>$\begin{array}{c} 0.07 \\ 3.00 \\ 0.025 \end{array}$</td> <td>0.09 2.84 0.032</td> <td>3.91 274.54 0.014</td> <td>1.21 120.8 0.01</td> <td>0.04 0.85 0.047</td> <td>-13.39 17573.60 -0.001</td> <td>$\begin{array}{c} 0.002 \\ 0.13 \\ 0.016 \end{array}$</td> <td>$\begin{array}{c} 0.0001\\ 0.001\\ 0.143\end{array}$</td> <td>-11.75 7839.05 -0.001</td> <td>24.28 4596.66 0.005</td>	GCA SCA GCA/SCA	-13.39 17573.6 -0.001	1.38 663.98 0.002	$\begin{array}{c} 0.07 \\ 3.00 \\ 0.025 \end{array}$	0.09 2.84 0.032	3.91 274.54 0.014	1.21 120.8 0.01	0.04 0.85 0.047	-13.39 17573.60 -0.001	$\begin{array}{c} 0.002 \\ 0.13 \\ 0.016 \end{array}$	$\begin{array}{c} 0.0001\\ 0.001\\ 0.143\end{array}$	-11.75 7839.05 -0.001	24.28 4596.66 0.005	
intes 9.02 7.41 30.7 37.6 29.5 54.12 9.02 34.43 5.33 14.34 5.33 14.34 5.33 5.413 5.53					Proportion	nal contribu	tion to total							
able 4: Estimates of gea effects of lines and testers for leaf yield and its component traits N Lines & testers FLW LA LMC CCI SLA LLS NPS TSL ID HI SYP N Lines & testers FLW LA LMC CCI SLA LLS NPS TSL D0 HI SYP China White 0.23^{+} -0.11 - 0.07 - 0.53^{+} -5.15 -1.77 - 52.89 - 0.02 - 0.02 - 8.22 - 0.01 - 4.536 - 0.01 - 4.64 - 5.15 - 0.17 - 52.89 - 0.02 - 0.02 - 1.8111^{+} China White 0.07^{+} 3.13^{+} -0.71 - 1.08 - 11.5^{+} -1.50 - 0.63^{-} -39.47 - 0.19 - 0.01 - 4.32.67 - 0.63 - 39.47 - 0.01 - 0.18 - 1.81 - 0.05 - 0.25 - 0.02 - 0.02 - 0.02 - 0.18 - 0.13 - 0.00^{-} -3.316^{-} -1.12^{-} -0.01^{-} -1.50 - 0.58^{-} -3.336^{-} -3.947 - 0.01 - 0.18 - 0.13 - 0.00^{-} -3.316^{-} -1.12^{-} -0.05^{-} -3.04^{-} -0.12^{-} -0.05^{-} -3.336^{-} -3.347 - 0.01 - 0.18 - 0.03^{-} -3.346^{-} -3.236^{-} -3.046^{-} -0.25^{-} -3.046^{-} -0.58^{-} -3.235^{-} -0.016^{-} -0.03^{-} -3.346^{-} -3.316^{-} -1.12^{-} -0.05^{-} -3.25^{-} -0.06^{-} -4.20^{-} 0.03^{-} -3.346^{-} -4.20^{-} 0.016^{-} 0.03^{-} -3.346^{-} -2.34^{-} -0.017^{-} -3.55^{-} -2.62^{-} 4.41^{-} -0.03^{-} -3.346^{-} -4.20^{-} 0.03^{-} -3.346^{-} -2.33^{-} -2.66^{-} -4.20^{-} 0.25^{-} -3.346^{-} -4.20^{-} 0.03^{-} -3.346^{-} -4.20^{-} 0.00^{-} -3.346^{-} -3.236^{-} -1.12^{-} 0.017^{-} 0.02^{-} -4.20^{-} 0.012^{-} -0.03^{-} -4.20^{-} 0.001^{-} 0.018^{-} -4.45^{-} 0.01^{-} 0.003^{-} -2.346^{-} -1.12^{-} 0.041^{-} -0.05^{-} -2.57^{-} -4.41^{-} 0.00^{-} 0.03^{-} -2.336^{-} -2.15^{-} 0.017^{-} 0.05^{-} -2.52^{-} -4.41^{-} 0.00^{-} 0.03^{-} -2.35^{-} -4.11^{-} 0.00^{-} 0.03^{-} -2.336^{-} -2.15^{-} 0.14^{+} 0.01^{-} 0.00^{-} -2.38^{-} 0.01^{-} 0.01^{-} -2.53^{-} 0.05^{-} 0.01^{-} 0.01^{-} -2.23^{-} 0.01^{-} 0.01^{-} -2.23^{-} 0.01^{-} 0.01^{-} 0.02^{-} -2.13^{-} 0.01^{-} 0.01^{-} 0.02^{-} 0.01^{-} 0.01^{-} 0.02^{-} 0.01^{-} 0.01^{-} 0.01^{-} 0.02^{-} 0.01^{-} 0.02^{-} 0.01^{-} 0.01^{-} 0.02^{-} 0.01^{-} 0.00^{-} 0.02^{-} 0.01^{-} 0.02^{-} 0.01^{-} 0.00^{-} 0.02^{-} 0.01^{-} 0.00^{-} 0.02^{-} 0.01^{-} 0.00^{-} 0.02^{-} 0.01^{-} 0.00^{-} 0.02^{-} 0.01^{-} 0.00^{-}	Lines Testers L×T	9.02 16.74 74.24	7.41 22.17 70.42	30.7 17.31 51.99	37.6 16.14 46.26	29.5 11.34 59.16	6.39 30.15 63.46	54.12 6.58 39.30	9.02 16.74 74.24	34.28 8.89 56.83	31.43 16.91 51.66	23.93 16.46 75.31	9.37 24.12 66.51	
N Lines & testers FLW LA LMC CCI SLA LLS NPS TSL D HI SYP China White 0.24^{+-1} 1354^{+-1} $0.011^{$	Table 4: Estimates o	of gca effects o	of lines and t	esters for lea	f yield and	l its compon	ent traits							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			LA	LMC	CCI	SLA	STT	SdN	TSL	D	IH	SYP	IXP	
	1M. indica HP2China White3Chinese $F_1(10)$ 4MS - 305M. multicaulis6Kajli OPH5M. multicaulis6Kajli OPH7SE (i)7U8Kosen7Bishnupur-108Sinificant at 5*, **Significant at 5 and FLW: fresh leaf weight (SLA: specific leaf area (ID: inter-nodal distance	$\begin{array}{c} -0.13^{**} \\ -0.13^{**} \\ -0.24^{**} \\ 0.07^{**} \\ 0.07^{**} \\ 0.07^{**} \\ 0.07^{**} \\ 0.07^{**} \\ 0.07^{**} \\ 0.02^{**} \\ -0.06^{*} \\ 0.06^{*} \\ 0.06^{*} \\ 0.17^{**} \\ 0.02 \\ 0.17^{**} \\ 0.17^{**} \\ 0.17^{**} \\ 0.12^{**} \\ 0.02 \\ dI \ per \ cent \ leve \\ g^{*} \\ 1per \ cent \ leve \\ g^{*} \\ 1per \ cent \ leve \\ 2d^{*} \\ 1per \ leve \\ 2d$	-2.59* -13.54** 3.13** 0.27 9.63** 9.63** 9.63** 3.10* 0.96 -20.45** -2.67* -2.13* 1.35 -2.13* 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04	-2.14** -2.14** 0.01 -0.71*** 0.56* 1.75** 0.25 -0.10 -1.12** 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.20 i.tively	1.07*** -0.01 1.08*** 1.18*** -0.96*** -0.96*** -0.96*** -0.58*** 0.132 0.35** 0.35** 0.35** 0.13 1.91*** 0.13 1.91*** 1.91*** 0.13 <i>SYP: prim</i> <i>SYP: prim</i> <i>SYP: prim</i>	-6.34* -4.64 -11.5** -4.37 6.41** 20.44** 2.38 -1.15 -2.62 4.30 4.96 10.77** -7.21** -7.21** 2.57 per plant (g)	-5.15* -5.15* 1.67 4.70* 2.49 -2.21 -1.50 2.04 -2.21 -2.53 -4.29 8.20** 10.42**	1.77** 0.70** 0.70** -0.63** -0.62** -0.64** 0.058** 0.06 -0.01 -0.05 0.15* 0.15* 0.15* 0.15* 0.15*	52.89** 50.69** -39.47** 1.28 -1.28 -23.35 -4.41 5.52 -4.41 5.52 5.18 5.18	-0.02 -0.38 -0.38 -0.19 -0.12 -0.12 -0.14 -0.02 -0.01 0.02 -0.03 -0.14 -0.03 0.01 0.015 0.05 0.016	-0.02^{**} 0.01^{**} 0.02^{**} 0.01^{**} 0.01^{**} 0.01^{**} 0.01^{**} 0.01^{**} 0.01^{**} 0.001 0.001 0.001 0.001 0.001	8.22** -43.26** -18.11** -18.11** -0.18 -2.36 +07 -35.41** 5.45* -11.58** -11.58** -18.22** 79.29** 2.57	-21.71** -21.71** 7.61*** 4.41* 5.66** 35.18** 1.842 -40.74** 11.16** -8.71** 70.65** 1.98	

Breeding for improved leaf yield in mulberry

J. Crop and Weed, 15(3)

LYP	0.43 -55.74**	59.07**	20.21^{**}	-8.41	-06.80- 77	-49.78**	22.81**	-48.10^{**}	44.37^{**}	-10.44^{*}	7.94	-74.04**	-80.23	40.00 14.18 ^{***}	78.29**	-83.00 120.5 ^{**}	-38.21**	59.15**	29.30**	-27.71**	35.62**	41.41 17 56**	-88.90**	47.14 ^{**} -25.13**	93.27**	-58.55**	-11.04 75.93 ^{**}	-68.44**	-126.58	13.85				
SYP	8.15 -87.51**	117.59^{**}	8.18	-36.64**	-82.13 7 83	-38.95**	42.59**	-15.30	-4.74	-15.27^{*}	20.81**	-64.46**	-127.75^{**}	/0.04 -1.31	70.68**	-149.84 146.54^{**}	-54.87**	101.94^{**}	72.7**	-82.11 -11.74	28.67**	3.76 -6 13	-68.33**	81.38 -77 67	113.60^{**}	-69.57**	-44.60 111.18 ^{**}	-135.67**	-111.39** 136.46**	8.93				
IH	0.00	-0.01^{*}	0.00	0.01	-0.02	-0.02	-0.01	-0.04	0.05^{**}	0.01	-0.01	-0.02	0.05*	0.01	0.00	0.02^{**} 0.02^{**}	-0.01	-0.01	-0.01	-0.00	0.01	0.04	-0.05**	-0.02	0.01	0.00	0.02 *	0.04	-0.05	0.01				
ID	-0.23** -0.43**	0.42**	0.08*	-0.21	-0.40	0.02	0.01	-0.02	-0.20	0.12^{**}	-0.24 0.40**	-0.36**	-0.63**	-0.11	0.41	-0.09* -0.09	-0.16**	-0.03	0.24^{**}	$0.1/0.21^{**}$	-0.08	-0.14 0.03	-0.38**	0.22^{**}	0.49^{**}	0.16^{**}	0.23 -0.09*	-0.41**	0.06 -0.44	0.11				
TSL	138.94^{**} -100.71^{**}	82.90** 70.70**	-9.87	-86.27**	-104./0 -46.08**	-25.98*	111.31^{**}	-85.32	14.77	16.3	-12.96	-106.78**	-173.41	104.91 25.04	139.29	-284.05	-106.29**	$^{42.20}_{114.9^{**}}$	113.57**	-108.45 -27.00*	46.35	105.97	-128.3**	98.6** -90.31**	194.29**	-134.76**	-8/.1 142.05**	-96.64**	-165.71** 147 88**	36.11				
NPS	1.67** -1.45**	0.31	0.42 0.04	-0.63**	-0.35	-0.03	1.17^{**}	-0.74**	-0.03	-0.38*	-0.05	-0.68**	-0.94	0.53^{**}	0.80	-2.19 1.26 ^{**}	-0.85**	1.09^{**}	0.54^{**}	-0.02 0.12	0.21	0.42	-1.13^{**}	0.43**	0.87^{**}	0.05	-0.37 0.32*	-0.81***	-0.83**	0.44		%), , , , , , , , , , , , , , , , , , , ,	t length (cm), er plant (g).	ò
SIL	-8.76 -4.38	5.32	3.15 3.16	2.57	-1.04 4 23	8.95	-3.14	-6.86	2.12	2.21	13.04 -2.42	9.52	-13.57*	-10.70	0.82	-25.84	2.26	3.97	5.12	-1.00 -6.68	4.81	3.70	-2.00	8.38 -0.06	23.41**	-27.11**	-1.00 20.13 ^{**}	-0.32	-7.49 9.03	15.36		ure content (?	100ts per plan lant (g) and p)
SLA	-6.40 10.54	-17.66^{**}	-11.45 -8.87	27.06**	0.78	-11.56	4.85	-5.06 -8.77	1.48	9.09 1.81	10.28	9.64	-8.90	$^{-21.04}_{17.67^{**}}$	-8.87	-9.29 -12.05	4.08	0.14	-3.15	-11./1 -2.77	18.87^{**}	15.93 2.08	-6.93	-14.42 [*] -12 77*	7.03	-16.09*	-10.85	46.01^{**}	-28.64** 17 49**	17.95		LMC: leaf moisture content (%)	NPS: primary shoots per plant length (cm), SYP: vield per plant (g) and per plant (g).	TSL; total shoot
CCI	-0.36 -0.20	0.15	-0.11 -1.33	-2.47**	4.32 0.41	-1.08^{**}	1.00^{**}	-1.74** 0 90**	0.51	0.00	-0.37	0.45	0.00	0.8/ -0.64	-1.17**	$1.3/1.79^{**}$	0.88**	0.28	-0.86^{*}	-3.07 -2.70**	0.04	-1.35	0.64	3.32** 0.85*	0.41	-0.17	-1.13 3.04**	-1.35**	0.14 -0.93	0.92			shoot (cm),	ent index,
LMC	-0.47 -2.10***	-0.90	-0.41 -0.79	0.64	4.02 -1 42*	-1.42	-1.19	1.78	2.32**	-1.18	1.77**	2.07***	-3.35**	-1.45 0.03	-1.03	-1.28 0.62	-0.50	0.84	-0.38	-1.02 -0.23	2.19^{**}	1.33	-1.83**	-0.17	1.47^{*}	-1.2	-0.82 -0.49	2.24**	-2.44 1 25	1.87	sspectively	t ²),	LLS: length of longest HI: harvest index (%),	CCI: Chlorophyll content index,
LA	-19.25** -27.31**	34.71** 35.15**	28.82**	-9.34** 10.78**	-42.78	-9.18^{**}	0.45	6.94 1 07	3.95	-19.88^{**}	-0.13 21.52^{**}	-21.7**	-37.55**	-14.00	27.9**	-13.08 0.76	-8.55** 20 57**	-30.32 22.68**	24.42^{**}	4.28 2.51	11.56^{**}	4.43 8 73**	-50.95	26.11** -2 39	13.30^{**}	2.65	-9.55 17.25**	-25.59**	-31.13** 37 85**	7.26	**Significant at 5 and 1 per cent level respectively			-
FLW	-0.32** -0.47**	0.59**	0.59^{**}	-0.33**	-0.60	-0.16^{**}	-0.03	0.01	0.37^{**}	-0.45^{**}	0.10 0.34^{**}	-0.29**	-0.52^{**}	-0.37^{**}	0.43**	-0.31 0.05	-0.19**	0.51^{**}	0.44**	0.10	0.28^{**}	0.02	-0.96	-0.10	0.31^{**}	-0.05	-0.09 0.37**	-0.52**	-0.65**	36.11	cant at 5 and 1	FLW: fresh leaf weight (g),	DLA: specific leaf area (cm ² g ⁻¹), ID: inter-nodal distance (cm),	eld
Cross	-0	<i>ω</i> ≁	4 vv	90	- ×	00	10	11	13	14	c1 91	17	18	20	21	23	24 25	26 26	27	26 7	30	31	33	34 35	36	37	39 39	40	41 42		*, **Signific	FLW: fresh	JLA: specifi ID: inter-no	LYP: leaf yield

J. Crop and Weed, 15(3)

Breeding for improved leaf yield in mulberry

SI	Geno	Name of the cross	CCI	LMC	SLA	NPS	TSL	ID	HI	LYC	LYA
No	type										
1	C350	CF_1 (10) x Bishnupur-10	14.10	77.81	223.55	9*	1348*	4.50^{*}	48	512*	2.561*
2	C359	CF_1 (10) x Bishnupur-10	12.54	78.10	237.55	11^{*}	1410^{*}	5.00	54*	512*	2.559^{*}
3	C490	MS-30 x C-776	13.61	76.74	215.03	12^{*}	1845*	5.50	46	508^{*}	2.538^{*}
4	C986	Kajli OPH x Bishnupur-10	11.49	81.83	272.28	12^{*}	1534*	4.00^{*}	46	505*	2.526^{*}
5	C362	CF_1 (10) x Berhampore-B	17.76	76.07	228.10	12^{*}	1366*	3.00^{*}	50^{*}	502*	2.512^{*}
6	C245	China White x English Black	16.42	78.39	246.68	11^{*}	1566*	4.50^{*}	47	501*	2.504^{*}
7	C838	M. multicaulis x C-776	30.43*	74.58	185.30^{*}	7	1108	4.50^{*}	49	499*	2.499^{*}
8	C343	CF_1 (10) x Bishnupur-10	15.50	78.68	243.30	9*	1176*	3.50*	49	485*	2.425^{*}
9	C570	MS-30 x English Black	17.34	81.33	270.74	11^{*}	1561*	4.50^{*}	44	482^{*}	2.409^{*}
10	C768	M.multicaulis x English Black	12.06	79.85	323.00	10^{*}	1425*	4.50^{*}	44	478^{*}	2.389^{*}
11	C400	CF_1 (10) x English Black	17.34	85.03*	270.00	11^{*}	1760^{*}	4.50^{*}	40	473*	2.367^{*}
12	C936	M.multicaulis xAlmora local	11.78	81.44	274.91	11^{*}	1386*	4.50^{*}	46	465*	2.325^{*}
13	C052	M.indica HP x Almora Local	17.24	75.57	226.52	8	957	5.00	56*	467^{*}	2.318^{*}
14	C616	MS-30 x Bishnupur-10	16.93	78.73	200.23	11^{*}	1415*	4.00^{*}	43	463*	2.316^{*}
15	C836	M.multicaulis xC-776	16.52	88.80^{*}	372.13	9*	1175*	5.00	47	461*	2.306^{*}
16	C413	CF_1 (10) x English Black	15.91	74.11	205.05	8	960	5.20	53*	451*	2.256^{*}
17	C1016	Kajli OPH x Almora local	11.11	82.16	279.14	9*	1145	5.00	49	451*	2.256^{*}
18	C1019	Kajli OPH x Almora local	13.22	78.55	233.35	9*	1234*	5.50	43	436v	2.179^{*}
19	C721	M.multicaulis xBishnupur-10	23.75*	76.33	217.93	6	779	7.00	41	421*	2.104^{*}
	S-1635	OPH of CSRS 1	17.10	79.23	254.40	8	1018	4.80	38	325	1.620
		LSD (0.05)	2.10	3.15	60.10	0.5	149	0.28	12	45	0.345

Table 6: Promising genotypes based on leaf yield performance and its component traits

Note : *, Significant at 5 per cent level

CCI: Chlorophyll content index, NPS: primary shoots per plant,

NPS: primary shoots per plant, ISL; HI: harvest index (%), LYC:

LMC: leaf moisture content (%), *TSL;* total shoot length (cm), *LYC:* leaf yield per crop (g) SLA: specific leaf area (cm²g ⁻¹), ID: inter-nodal distance (cm), LYA: leaf yield per annum (kg).

separate gene(s) for *per se* yield and yield being end product of gene interactions among different yield attributes.

The specific combining ability effect clearly revealed that it would not be possible to isolate crosses where all attributes are in the most desirable combinations. The usefulness of a specific cross for exploitation of heterosis is determined by its specific combining ability effects. Seven cross combinations such as $MS-30(H) \times C$ -776(H), Kajli OPH(H) × Bishnupur-10(H), Kajli OPH(H) \times V1(L), Chinese F₁ 10 (H) \times Bishnupur-10(H), Kajli OPH(H) \times Almora local(H), MS-30(H) \times English Black(L), *M. indica* HP(L) \times Kosen (L) and *M. indica* HP(L) \times Almora Local(H) expressed an appreciable amount(>50%) of the SCA effects. These superior cross combinations involves $High \times High$, High \times Low and Low \times Low parental gca effects, suggesting the involvement of both additive \times additive, additive \times dominance, over dominance and epistatic type of genetic interaction action. It is observed from diffent cross combinations, that cross which showed high sca effects for leaf yield had invariable exhibited positive sca effects for one or more yield components also. In the present study, any combination among the parents of mulberry may produce hybrid vigour over the parents due to dominant, over dominant or epistatic gene action. The present findings were also similar to Vijayan *et al.*, 1997, Banerjee *et al.*, 2014 and Pooja, 2016.

Different agro-climatic conditions are prevailing in India and it is highly essential to develop mulberry varieties specific to each of these regions for sustainable sericulture and targeted raw silk production. Although a few mulberry varieties are available for commercial cultivation, the full genetic potential of this crop is yet to be harnessed for increasing the leaf productivity. In this direction, around nine hundred and eighty three recombinants were evaluated for leaf yield and its components over five crop seasons under irrigated condition. Wide and significant variation was observed for Chlorophyll index (4.58 - 32.07), specific leaf area (142.4 - 409.3 cm²g⁻¹), harvest index (42 - 68 %) and leaf yield plant⁻¹ (0.06 to 3.41 kg year⁻¹).

Nineteen cross combinations which showed high *sca* effect and mean performance also recorded highly significant differences for leaf yield and its components traits (Table 6). More emphasis was given on leaf yield along with few desired leaf quality parameters in terms of visual thickness, texture and moisture content to identify the high yielding genotypes. Based on annual leaf yield, nineteen superior genotypes were selected

from 983 progenies which recorded HIGHER annual leaf yield of range of 2.56 kg (C 350) to 2.10 kg (C 721) along with desirable traits like chlorophyll index (> 10 CCI), leaf moisture (> 70%), Inter-nodal distance (>4 cm) and economical heterosis for leaf yield (>30%). These selected genotypes will be further evaluated under preliminary yield trial (PYT) for leaf productivity and quality is genetic improvement of mulberry.

On the basis of line × tester set analysis, it is concluded that the ratio of 62GCA/62SCA was less than unity for the twelve traits studied indicating involvement of non-additive gene action. The parents Chinese $F_1(10)$ and Bishnupur-10 were identified as good general combiners and could be further exploiting in mulberry improvement through hybridization breeding. Based on the mean performance and significant sca effects, MS-30 x C-776, KOP x Bishnupur-10, KOP x V1, CF, (10) x Bishnupur-10, KOP x Almora local, MS-30 x English Black, MHP x Kosen and MHP x Almora local were found to be the most crosses for leaf yield and its components for within family selection. Based on annual performance of progenies under irrigated condition over five seasons, 19 genotypes were identified as high yielding over variety S-1635 which need to be evaluated further following systematic evaluation procedures of mulberry for identify high yielding variety in Mulberry.

REFERENCES

Allard, R. W. 1960. Principles of plant breeding. John Wiley and Sons. New York, 54-85.

- Banerjee, R., Chattopadhyay, S. Das, N. K., Doss, S. G., Saha, A. K. and Nirmal Kumar, S. 2004. Combining ability analysis for bacterial leaf spot resistance, leaf yield, and agronomic traits in mulberry clones. *J. Crop Improvement*, 28(3):305-323.
- Das, B.C. and Krishnaswami, S. 1965. Some observation on interspecific hybridization in mulberry. *Indian J. Seric.*, **4**: 1-4.
- Grafius, J.E. 1954. Heterosis in barley. Agron. J. 51: 551-54
- Kempthorne, 1957. An introduction to Genetic Statistics, JohnWilly and Sons, New York.
- Pooja, G. N. 2016, Combining ability for seedling traits in mulberry. 2016, *M. Sc. Thesis* of Agricultural Sciences GKVK, Bengaluru.
- Roy, D., Mondal, L. N. Pain A. K. and Mondal, S. K. 1973. Effect of NPK and Farm yard manure on the yield and nutritive value of mulberry leaf. *Indian J. Seric.*, **12**: 7-12.
- Sprague, G. F. and Tatum, L. A. 1942. General vs specific combining ability crosses of corn. J. Amer. Soc. Agron., **34**: 932-42.
- Vijayan, K., Chauhan, S. Das, N. K., Chakraborti, S. P. and Roy, B. N. 1997. Leaf yield component combining abilities in mulberry (*Morus* spp.). *Euphytica*, 98: 47-52.
- Vijayan, K., Chkraborti, S. P., Doss, S. G., Ghosh, P. D. and Ercisli, S. 2008, Combining ability for morphological and biochemical characters in mulberry (*Morus spp.*) under salinity stress. *Intern. J. Ind. Ento.*, **16**(2):123-27.