Yield, quality and soil fertility as influenced by *rabi* castor (*Ricinus communis* L.) based intercropping system

B. K. YADAV, ¹G. N. PATEL AND ²S. K. CHOUDHARY

Department of Agronomy, C. P. C. A., ¹Centre for Natural Resources S.D.A.U., Sardarkrushinagar- 385506, Gujarat ²Department of Agronomy, B.A.U, Sabour-813210, Bhagalpur, Bihar

Received : 04-07-2018 ; Revised : 10-02-2019 ; Accepted : 22-03-2019

ABSTRACT

An experiment comprising nine treatments of sole crops and intercropping systems viz., castor sole, lucerne sole, chicory sole, fenugreek sole, carrot sole, castor + lucerne (1:2), castor + chicory (1:2), castor + fenugreek (1:2), and castor + carrot (1:2) was conducted in a randomized block design with three replications. Sole castor, castor + lucerne and castor + fenugreek (1:2) found equally effective with respect to seed yield of castor. These treatments were found significantly superior than rest of the treatments. With regards to intercrops viz- lucerne, chicory, fenugreek and carrot the maximum green forage yield of lucerne / chicory, seed yield of fenugreek and root yield of carrot were obtained when they were sown as sole crop. Similar trend was also observed in stalk / dry fodder / straw / green fodder yield of castor and intercrops. Oil content in castor / crude protein and crude fiber content in lucerne and chicory / total soluble salts in carrot were found higher in their sole crop treatments as compared to when they were grown as intercrop. Oil yield was found significantly higher in sole castor than other treatments but it was statistically at par with castor + lucerne and castor + fenugreek at 1:2 ratio. Nutrient status of soil viz: organic carbon, available N, P, K and S after harvest of crops did not differ significantly due to different treatments.

Keywords: Castor, intercropping, row ratio and sole crop

Castor (Ricinus communis L.) is a non-edible oilseed crop having high industrial importance due to presence of unique fatty acid and ricinoleic acid. Castor is extensively cultivated in India, China, Brazil, Ethiopia and Thailand etc in the world. In general castor is grown in kharif season but after taking short duration kharif legume crop for getting maximum income per unit area, rabi castor can be sown with intercrops This practices leads to some benefits like yield advantages as compared to sole cropping, greater stability of yield over different seasons, insurance against aberrant weather conditions, build-up or maintenance of soil fertility, economy of land, production of higher yield and higher economic returns per unit area. Keeping this in view, present experiment on "Feasibility of intercropping in rabi castor under North Gujarat agro climatic conditions" was planned.

A field experiment was conducted during *rabi* season of the year 2013 at Agronomy Instructional Farm, Chimanbhai Patel College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha (North Gujarat). The field experiment was laid out in a Randomized Block Design with four replications. An experiment consists of nine treatments including sole crops and intercropping systems *viz.*, T₁ : castor sole, T₂ : lucerne sole, T₃ : chicory sole, T₄ : fenugreek sole, T₅ : carrot sole, T₆ : castor + lucerne (1:2), T₇ : castor + chicory (1:2), T₈ : castor + fenugreek (1:2), and T₉ : castor + carrot (1:2) were allotted to each plot by random method. The soil of experimental plot was loamy sand

Short communication Email: saurabhkkv2885@gmail.com in texture, low in organic carbon and available nitrogen, medium in available phosphorus and potassium. Organic carbon (%), available N (kg ha⁻¹), available P_2O_5 (kg ha⁻¹), available K₂O (kg ha⁻¹) and available sulphur (ppm ha⁻¹) were estimated by Walkley and Black's rapid titration method (Jackson, 1973), Alkaline permanganate method (Jackson, 1973), Olsen's method (Jackson, 1954), Flame photometer method (Jackson, 1973) and Extraction with 1 % NaCl (William and Steinbergs, 1959), respectively.

Random seed samples were drawn from the produce of each net plot to estimate the oil content of castor seed. The oil content in castor seed samples was determined by IBM DC/20 series, NMR (Nuclear Magnetic Resonance) analyzer. Oil yield (kg ha⁻¹) was worked out by using following formula

Oil yield (kg ha⁻¹) =
$$\frac{\text{Oil (\%)} \times \text{seed yield (kg ha-1)}}{100}$$

The crude protein content and crude fiber content were measured with the help of INSTALAB 600 NIR product analyzer and it was expressed as percentage on dry weight basis (Nortvedt *et al.*, 1998).

Significantly higher seed and stalk yields (kg ha⁻¹) were recorded by sole castor than rest of the intercropping treatments, but it remained statistically at par with castor + lucerne and castor + fenugreek with row ratio of 1:2, which could be attributed to higher and optimum plant densities in sole cropping system. Among the intercropping treatments, castor + lucerne (1:2) and

e 33 e 11 e 33 e 33 e 11 cerne (1:2) 11 icory (1:2) (10 in purek (1:2) (10 in parenthesis indican in parenthesis indican e e e e e e e e e e e e e e e e e e e	2315 19800 30300 816 16518 2267 (10900) 1974 (18280) 2154 (534) 1761 (9783) -	2616 3400 5419 1353 18704 2539 (1879) 2171 (1879) 2171 (1879) 2171 (1879) (1879) (1879) (1879) (1879) (15163) (15163) 	48.70 - - 48.14 47.85 47.85 47.32 47.32 1.55 NS	1127 - - 1091 945 1035 833 833 51.61 158.54	- 18.65 20.41 12.60 18.13 20.22 - 12.25	
$\begin{array}{c} T_{1}^{1} & \text{Lucerne sole} \\ T_{3}^{2} & \text{Chicory sole} \\ T_{6}^{3} & \text{Carrot sole} \\ T_{5}^{3} & \text{Carrot sole} \\ T_{7} & \text{Carrot sole} \\ T_{7} & \text{Castor + Lucerne (1:2)} \\ T_{7} & \text{Castor + Chicory (1:2)} \\ T_{9} & \text{Castor + Carrot (1:2)} \\ T_{9} & \text{Castor + Carrot (1:2)} \\ T_{9} & \text{Castor + Carrot (1:2)} \\ \hline \\ $	19800 30300 816 (6518 2267 (1900) 1974 (1900) 1974 (534) 1761 9783) - -		- - 48.14 47.85 48.05 47.32 47.32 1.55 NS	- - 1091 945 1035 833 833 51.61 158.54	18.65 20.41 12.60 18.13 20.22 - 12.25	20.6 10.7 2.35 20.4 10.5 - 2.20
$\begin{array}{c} T_{3}^{2} Chicory sole \\ T_{6}^{3} Fenugreek sole \\ T_{6}^{3} Carrot sole \\ T_{5} Castor + Lucerne (1:2) \\ T_{7} Castor + Chicory (1:2) \\ T_{8} Castor + Fenugreek (1:2) \\ T_{9} Castor + Carrot (1:2) \\ T_{9} Castor + Carrot (1:2) \\ Castor + Carrot (1:2) \\ T_{9} Castor + Carrot + Carrot (1:2) \\ T_{9} Castor + Carrot + $	30300 816 16518 2267 10900) 1974 18280) 2154 534) 1761 9783) -		- - 48.14 47.85 48.05 47.32 47.32 1.55 NS	- - 945 1091 1035 833 833 51.61 158.54	20.41 12.60 18.13 20.22 - 12.25	10.7 - 20.4 10.5 - 2.20
$T_{5}^{3} Fenugreek sole T_{6}^{3} Carrot sole T_{5}^{4} Carrot sole T_{5}^{4} Carrot sole T_{7}^{3} Castor + Lucerne (1:2) (1) T_{7} Castor + Chicory (1:2) (1) T_{8} Castor + Fenugreek (1:2) (1) T_{9} Castor + Carrot (1:2) (1) (1) T_{7} Castor + Carrot (1:2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1$	816 [6518 2267 [0900) 1974 [8280] 2154 (534) 1761 9783) - -		- 48.14 47.85 48.05 47.32 1.55 NS	- 1091 945 1035 833 51.61 158.54	12.60 18.13 20.22 -	2.35 20.4 10.5 -
$T_{6}^{4} Carrot sole \\T_{6}^{4} Castor + Lucerne (1:2) 2 \\T_{7} Castor + Chicory (1:2) (1) \\T_{8} Castor + Fenugreek (1:2) 2 \\T_{9} Castor + Carrot (1:2) (1) (1) \\T_{9} Castor + Carrot (1:2) (2) (2) \\Castor + Carrot (1:2) (1) (2) (2) \\Castor + Carrot (1:2) (2) (2) \\T_{9} Castor + Carrot (1:2) (2) (2) \\T_{9} Castor + Carrot (1:2) (2) (2) \\Castor + Carrot (1:2) (2) (2) \\Castor + Carrot (1:2) (2) (2) \\T_{1} Castor sole \\T_{1} Castor sole \\T_{2} Chicory sole \\T_{4} Fenugreek sole \\T_{4} Castor sole \\T_{4} Castor sole \\T_{4} Castor sole \\T_{1} Castor sole \\T_{2} Chicory sole \\T_{1} Castor sole \\T_{2} Chicory sole \\T_{2} Chicory sole \\T_{2} Chicory sole \\T_{2} Chicory sole \\T_{2} Castor sole \\T_{2} Chicory \\T_{2} Ch$	 [6518 2267 (0900) 1974 (19280) 2154 (534) 1761 9783) - attas intercrops value 		48.14 47.85 48.05 47.32 1.55 NS	1091 945 1035 833 51.61 158.54	12.60 18.13 20.22 - 12.25 -	2.35 20.4 10.5 - 2.20
$T_{6}^{2} Castor + Lucerne (1:2) 2 \\ T_{7} Castor + Chicory (1:2) (10) \\ T_{8} Castor + Fenugreek (1:2) (11) \\ T_{9} Castor + Carrot (1:2) (12) \\ T_{9} Castor + Carrot (1:2) (12) \\ Castor + Carrot (1:2) (12) (12) \\ Castor + Carrot (1:2) (12) (12) \\ Castor + Carrot (1:2) (1$	2267 (0900) 1974 [8280) 2154 (534) 1761 9783) - -		48.14 47.85 48.05 47.32 1.55 NS	1091 945 1035 833 51.61 158.54	18.13 20.22 - 12.25 -	20.4 10.5 2.20
$T_{7} Castor + Chicory (1:2) \qquad (1) \\ T_{8} Castor + Fenugreek (1:2) \qquad (2) \\ T_{9} Castor + Carrot (1:2) \qquad (1) \\ (1) \\ SEm (\pm) \qquad (1) \\ LSD (0.05) \qquad (0.05) \qquad (2) \\ Ote: *Data presented in parenthesis indica. \\ Ote: *Data presented in parenthesis indit. \\ Ote: *Data presented in parenthesis i$	(10900) 1974 18280) 2154 (534) 1761 9783) - -		47.85 48.05 47.32 1.55 NS	945 1035 833 51.61 158.54	20.22 - 12.25 -	10.5 - 2.20
T ₇ Castor + Chicory (1:2) (1) T ₈ Castor + Fenugreek (1:2) (2) T ₉ Castor + Carrot (1:2) (5) SEm (\pm) (6) SEm (\pm) (7) SEm (\pm	1974 1874 (8280) 2154 (534) 1761 9783) - - - -		47.85 48.05 47.32 1.55 NS	945 1035 833 51.61 158.54	20.22 - 12.25 -	10.5 - 2.20
TsCastor + Fenugreek (1:2) (12) T9Castor + Carrot (1:2) (12) SEm (±) (12) (12) SEm (±) (12) (12) LSD (0.05) (0.05) (0.05) Ote: *Data presented in parenthesis indica.Ote: *Data presented in parenthesis indica.St. NoTreatmentsT1Castor soleT2Lucerne soleT4Fenugreek soleT4Fenugreek sole	2154 2154 (534) 1761 9783) - - ites intercrops value		48.05 47.32 1.55 NS	1035 833 51.61 158.54	- 12.25 -	- 2.20
T ₉ Castor + Carrot (1:2) (5 SEm (±) LSD (0.05) ote: *Data presented in parenthesis indica ote: *Data presented in parenthesis indica Sr. No Treatments T ₁ Castor sole T ₂ Cucerne sole T ₃ Fenugreek sole	(534) 1761 9783) - - attes intercrops value	Ŭ	47.32 1.55 NS	833 51.61 158.54	12.25	2.20
T_9 Castor + Carrot (1:2)(9)SEm (±)LSD (0.05)(9)LSD (0.05) <i>ote:</i> *Data presented in parenthesis indican <i>lote:</i> *Data presented in parenthesis indicanSr. NoTreatmentsSr. NoTreatmentsTCastor soleTCastor soleTCucerne soleTChicory soleTChicory soleTFenugreek sole	1761 9783) - ites intercrops value		47.32 1.55 NS	833 51.61 158.54	12.25	2.20
SEm (±) LSD (0.05) ote: *Data presented in parenthesis indica lable 2: Effect of different treatments Sr. No Treatments T ₁ Castor sole T ₂ Cucerne sole T ₃ Fenugreek sole	- - ates intercrops value		1.55 NS	51.61 158.54		
LSD (0.05) ote: *Data presented in parenthesis indican able 2: Effect of different treatments Sr. No Treatments T ₁ Castor sole T ₂ Lucerne sole T ₃ Chicory sole T ₄ Fenugreek sole	- ates intercrops value		NS	158.54		•
 <i>ste:</i> *Data presented in parenthesis indicated able 2: Effect of different treatments br. No Treatments br. No Treatments T₁ Castor sole T₂ Lucerne sole T₃ Chicory sole T₄ Fenugreek sole T₄ Fenugreek sole 	ates intercrops value	S				
ole	ts on residual soil	fertility after harvest o	f the crops			
			Nutrient status in soil after harvest	in soil after ha	rvest	
T1Castor soleT2Lucerne soleT3Chicory soleT4Fenotgreek sole	Organic carbon (%)	Available nitrogen (kg ha ⁻¹)	-	Available phosphorus (kg ha [.])	Available potash (kg ha ^{-l})	Available sulpher (ppm)
T ₂ ² Luceme sole T ₃ Chicory sole T ₄ Fenugreek sole	0.19	141.45	7	45.68	280.64	10.23
T_{4}^{5} Chicory sole T_{4}^{5} Fenugreek sole	0.21	158.45	4	51.26	286.42	10.09
T ⁴ Fenugreek sole	0.20	151.60	7	48.50	279.68	9.94
	0.20	155.26	7	49.71	282.34	10.57
\mathbf{I}_{ς} Carrol sole	0.19	142.30	7	46.35	280.12	9.85
T_{6} Castor+Lucerne (1:2)	0.23	152.56	7	48.62	286.40	9.88
T_{7} Castor+ Chicory (1:2)	0.22	151.85	7	46.21	284.20	10.13
T ₈ Castor+ Fenugreek (1:2)	0.21	148.62	7	46.89	283.61	9.95
T ₉ Castor+ Carrot (1:2)	0.20	142.17	7	44.15	276.56	9.82
SEm (±) LSD (0.05)	0.008 NS	4.13 NS		1.60 NS	7.57 NS	0.35 NS
Initial coil nutriant ctatuc	0.17	1/13 50		17 50	387.00	0 73

J. Crop and Weed, 15(1)

Yadav et al.

193

castor + fenugreek were found equally efficient to castor sole as lucerne and fenugreek crops have ability to fix atmospheric N and supply it to the associated castor crop and suppressed the weeds and higher sunshine availability to castor. Lower seed and stalk yields were noticed under castor intercropping with carrot and chicory at 1:2 row ratios (Table 1). This might be due to higher competition offered by intercrops for natural resources like space, plant nutrients, moisture and incoming sun radiation. The findings are in agreement with the results reported by Dhimmer (2009) and Singh (2009).

Green forage and dry fodder yields of lucerne and chicory, seed and straw yield of fenugreek and root and green forage yields of carrot were reduced in intercropping systems as compared to their respective sole cropping (Table1). Such variation could be ascribed due to increase in plant densities since these were grown as intercrops with castor and higher competition for natural resources like soil moisture, plant nutrients, space and sunlight which are responsible for less photosynthesis rate resulted in lower accumulation of photosynthates in seed and dry matter per plant in comparison to sole crop. These findings are in close vicinity with the results of Srilatha *et al.* (2002).

The sole crop and intercropping systems exerted their non-significant effect on oil content of castor (Table 1), but marginally higher oil content was recorded with castor grown as sole crop as compared to different intercropping systems. The decrease in oil content of castor grown in intercropping system might be due to higher competition offered by intercrops for natural resources like space, plant nutrient, moisture and incoming sun radiation. Similar findings were recorded by Singh (2009) and Singh *et al.* (2013).

Further, the intercropping systems could not exert their significant effect on crude protein content of lucerne and chicory fodder and total soluble salts in carrot. While lower values of crude protein content in lucerne and chicory and total soluble salts in carrot were recorded when they were grown as intercrop with castor at 1:2 row ratio (Table 1). Moreover, higher crude fibre content of sole crops (lucerne and chicory) was ascribed as compared to their respective intercropping systems *i.e.* lucerne, chicory and carrot (Table 1). This might be due to higher competition offered by intra row spacing for natural resources like space, plant nutrients, moisture and incoming solar radiation.

The sole crop and intercropping systems exerted did not exert their significant effect on soil available organic carbon, nitrogen, phosphorus, potassium and sulpher after harvest of the crops (Table 2). However, improvement in organic carbon of soil was found in castor + lucerne intercropping (1:2 row ratio) at the end of cropping as compared to initial nutrients status of soil. This might be due to the nitrogen fixing behavior of lucerne (leguminous crop). Similar results for intercropping systems in mustard + lucerne were also reported by Patel et al. (2007) and Singh et al. (2013) in sandy loam soils of north Gujarat. Further, higher available nitrogen, phosphorus and potassium were observed in lucerne grown as sole, whereas, fenugreek sole established its superiority by recording higher available sulphur after harvest of the crop (Table 2). Available N, P and K content increased in soil after harvest of crops might be due to the complementary effect of lucerne and fenugreek throughout the crop growth period. These results are in conformity with findings of Patel et al. (2007) and Singh et al. (2013). However, growing of castor as a sole crop as well as castor + carrot as intercropping reduced the nutrient status of available N, P2O5 and K over the initial fertility status of the soil.

REFERENCES

- Dhimmar, S.K. 2009. Effect on growth and yield of *rabi* castor on pulses intercropping under varying planting geometry. *American-Europian J. Sci. Res.*, 4: 165-68.
- Jackson, M.L. 1954. "Soil chemical Analysis" Prentice Hall of India Pvt. Ltd., New Delhi, pp. 183-92.
- Jackson, M.L. 1973. Soil Chemical Analysis, Prentice Hall of India Pvt. Ltd., New Delhi.
- Nortvedt, R., Torrissen, O.J. and Tuene, S. 1998. Application of near infrared transmittance spectroscopy in the determination of fat, protein and dry matter in Atlantic halibut fillet. *Chemometrics and Intelligent Laboratory Systems*, **42**: 199-207.
- Patel, G.N., Patel, M.K., Patel, R.M., Patel, K.M. and Pathak, H.C. 2007. Economics of inter/ mixed cropping of lucerne (*Madicago sativa*) in mustard (*Brassica juncea* L.) in Northern Agro-Climatic zone of Gujarat. J. Oilseeds Res., 24: 340-34.
- Singh, I. 2009. Study on intercropping of castor, *Ricinus communis* L. under irrigated condition. *J. Oilseeds Res.*, **26**: 170-71.
- Singh, J., Patel, B.S. and Rathode, B.S. 2013. Feasibility of inter/mixed cropping system of mustard {*Brassica juncea* (L.) Czern & Coss} with lucerne (*Madicago sativa*). *Haryana J. Agron.*, **29**: 67-71.
- Srilatha, A.N., Masthan, S.C. and Mohammed, S. 2002. Production potential of castor intercropping with legumes under rainfed conditions. *J. Oilseeds Res.*, **19**: 127-28.
- William, D.H. and Steinbergs, A. 1959. Soil sulphur fraction as chemical index of available sulphur in some Australian soil. *Australian J. Agron. Res.*, 10: 340-52.